Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Environ Toxicol Pharmacol ; 106: 104356, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158029

RESUMO

Contamination of drinking water due to fluoride (F-) is a major concern worldwide. Although fluoride is an essential trace element required for humans, it has severe human health implications if levels exceed 1.5 mg. L-1 in groundwater. Several treatment technologies have been adopted to remove fluoride and reduce the exposure risk. The present article highlights the source, geochemistry, spatial distribution, and health implications of high fluoride in groundwater. Also, it discusses the underlying mechanisms and controlling factors of fluoride contamination. The problem of fluoride-contaminated water is more severe in India's arid and semiarid regions than in other Asian countries. Treatment technologies like adsorption, ion exchange, precipitation, electrolysis, electrocoagulation, nanofiltration, coagulation-precipitation, and bioremediation have been summarized along with case studies to look for suitable technology for fluoride exposure reduction. Although present technologies are efficient enough to remove fluoride, they have specific limitations regarding cost, labour intensity, and regeneration requirements.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Humanos , Fluoretos/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Água Potável/análise
2.
Toxicol Appl Pharmacol ; 466: 116449, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36924898

RESUMO

Intensive and inefficient exploitation of pesticides through modernized agricultural practices has caused severe pesticide contamination problems to the environment and become a crucial problem over a few decades. Due to their highly toxic and persistent properties, they affect and get accumulated in non-target organisms, including microbes, algae, invertebrates, plants as well as humans, and cause severe issues. Considering pesticide problems as a significant issue, researchers have investigated several approaches to rectify the pesticide contamination problems. Several analyses have provided an extensive discussion on pesticide degradation but using specific technology for specific pesticides. However, in the middle of this time, cleaner techniques are essential for reducing pesticide contamination problems safely and environmentally friendly. As per the research findings, no single research finding provides concrete discussion on cleaner tactics for the remediation of contaminated sites. Therefore, in this review paper, we have critically discussed cleaner options for dealing with pesticide contamination problems as well as their advantages and disadvantages have also been reviewed. As evident from the literature, microbial remediation, phytoremediation, composting, and photocatalytic degradation methods are efficient and sustainable and can be used for treatment at a large scale in engineered systems and in situ. However, more study on the bio-integrated system is required which may be more effective than existing technologies.


Assuntos
Praguicidas , Humanos , Praguicidas/metabolismo , Agricultura , Biodegradação Ambiental , Tecnologia
3.
Mar Pollut Bull ; 188: 114569, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36708616

RESUMO

Mangroves provide various ecosystem services, carbon sequestration, biodiversity depository, and livelihoods. They are most abundant in marine and coastal ecosystems and are threatened by toxic contaminants like heavy metals released from various anthropogenic activities. However, they have significant potential to survive in salt-driven environments and accumulate various pollutants. The adverse effects of heavy metals have been extensively studied and recognized as toxic to mangrove species. This study sheds light on the dynamics of heavy metal levels, their absorption, accumulation and transport in the soil environment in a mangrove ecosystem. The article also focuses on the potential of mangrove species to remove heavy metals from marine and coastal environments. This review concludes that mangroves are potential candidates to clean up contaminated water, soil, and sediments through their phytoremediation ability. The accumulation of toxic heavy metals by mangroves is mainly through roots with limited upward translocation. Therefore, promoting the maintenance of biodiversity and stability in the coastal environment is recommended as an environmentally friendly and potentially cost-effective approach.


Assuntos
Metais Pesados , Poluentes do Solo , Ecossistema , Metais Pesados/análise , Solo , Biodiversidade , Poluentes do Solo/análise
4.
Environ Sci Pollut Res Int ; 30(11): 29407-29431, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36414896

RESUMO

The quality of groundwater in the Jaunpur district of Uttar Pradesh is poorly studied despite the fact that it is the only supply of water for both drinking and irrigation and people use it without any pre-treatment. The evaluation of groundwater quality and suitability for drinking and irrigation is presented in this study. Groundwater samples were collected and analysed by standard neutralisation and atomic emission spectrophotometry for major anions (HCO3-, SO42-, Cl-, F-, NO3-), cations (Ca2+, Mg2+, Na+, K+), and heavy metals (Cd, Mn, Zn, Cu, and Pb). The geographic information system (GIS) and statistical inferences were utilised for the spatial mapping of the groundwater's parameters. The potential water abstraction (i.e. taking water from sources such as rivers, streams, canals, and underground) for irrigation was assessed using the sodium absorption ratio (SAR), permeability index (PI), residual sodium carbonate (RSC), and Na percentage. According to the findings, the majority of the samples had higher EC, TDS, and TH levels, indicating that they should be avoided for drinking and irrigation. The positive correlation coefficient between chemical variability shows that the water chemistry of the studied region is influenced by geochemical and biological causes. According to the USSL (United States Salinity Laboratory) diagram, most of the samples fall under the C2-S1 and C3-S1 moderate to high salt categories. Some groundwater samples were classified as C4-S3 class which is unfit for irrigation and drinking. This study suggests that the groundwater in the study area is unfit for drinking without treatment. However, the majority of the samples were suitable for irrigation.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Humanos , Sistemas de Informação Geográfica , Monitoramento Ambiental , Água Subterrânea/análise , Ânions/análise , Sódio/análise , Água/análise , Qualidade da Água , Poluentes Químicos da Água/análise , Água Potável/análise , Índia
5.
J Contam Hydrol ; 253: 104122, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563652

RESUMO

Groundwater resources are alarmingly depleting due to over-exploitation and significant climate changes over time. Therefore, demarcation of groundwater potential zones is essential for addressing the needs of various industries in semi-arid area. Depleting groundwater resources, topography, aquifer features and climatic factors make it necessary to demarcate ground water potential zones in semiarid region of Rajasthan. The Analytical Hierarchy Process (AHP), Geographic Information System (GIS), and Multi Influence Factor (MIF) were used to determine the groundwater potential zones (GWPZs) in the semi-arid region of Jaipur, located in western Rajasthan. In present study, ten influential factors were employed i.e., geomorphology, land use/land cover (LULC), drainage density, rainfall, topographic wetness index (TWI), soil texture, slope, roughness, topographic position index (TPI) and curvature. In AHP technique, the pairwise comparison matrix was generated, and weightages were given to each thematic layer while for MIF, a proposed score for each layer was computed from the aggregate weight of major and minor effects. The GWPZ map generated by AHP technique was categorised into three parts: high, moderate and poor potential zones, covering 13%, 50.7% and 36.3% of the district. While, the GWPZ map produced with the MIF technique was also divided into the same poor, moderate, and high categories, encompassing 35.3, 44.1, and 20.6% of the district, respectively. The results of AHP and MIF techniques were then cross-validated with well depth data obtained from CGWB report, 2019-20. The receiver operating characteristics (ROC) were plotted and the findings shows that the Area under the Curve (AUC) was 79% and 76% for AHP and MIF, respectively which is considered as moderate to high in predictive precision. The study would be helpful in locating drilling sites for groundwater exploration and developing sustainable groundwater and land use policies.


Assuntos
Processo de Hierarquia Analítica , Água Subterrânea , Índia , Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica
7.
Environ Sci Pollut Res Int ; 30(28): 71766-71778, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34523099

RESUMO

Incense sticks ash is one of the most unexplored by-products generated at religious places and houses obtained after the combustion of incense sticks. Every year, tonnes of incense sticks ash is produced at religious places in India which are disposed of into the rivers and water bodies. The presence of heavy metals and high content of alkali metals challenges a potential threat to the living organism after the disposal in the river. The leaching of heavy metals and alkali metals may lead to water pollution. Besides this, incense sticks also have a high amount of calcium, silica, alumina, and ferrous along with traces of rutile and other oxides either in crystalline or amorphous phases. The incense sticks ash, heavy metals, and alkali metals can be extracted by water, mineral acids, and alkali. Ferrous can be extracted by magnetic separation, while calcium by HCl, alumina by sulfuric acid treatment, and silica by strong hydroxides like NaOH. The recovery of such elements by using acids and bases will eliminate their toxic heavy metals at the same time recovering major value-added minerals from it. Here, in the present research work, the effect on the elemental composition, morphology, crystallinity, and size of incense sticks ash particles was observed by extracting ferrous, followed by extraction of calcium by HCl and alumina by H2SO4 at 90-95 °C for 90 min. The final residue was treated with 4 M NaOH, in order to extract leachable silica at 90 °C for 90 min along with continuous stirring. The transformation of various minerals phases and microstructures of incense sticks ash (ISA) and other residues during ferrous, extraction, calcium, and alumina and silica extraction was studied using Fourier transform infrared (FTIR), dynamic light scattering (DLS), X-ray fluorescence (XRF), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and inductively coupled plasma-optical emission spectroscopy (ICP-OES). DLS was used for analyzing the size during the experiments while FTIR helped in the confirmation of the formation of new products during the treatments. From the various instrumental analyses, it was found that the toxic metals present in the initial incense sticks ash got eliminated. Besides this, the major alkali metals, i.e., Ca and Mg, got reduced during these successive treatments. Initially, there were mainly irregular shaped, micron-sized particles that were dominant in the incense sticks ash particles. Besides this, there were plenty of carbon particles left unburned during combustion. In the final residue, nanosized flowers shaped along with cuboidal micron-sized particles were dominant. present in If, such sequential techniques will be applied by the industries based on recycling of incense sticks ash, then not only the solid waste pollution will be reduced but also numerous value-added minerals like ferrous, silica, alumina calcium oxides and carbonates can be recovered from such waste. The value-added minerals could act as an economical and sustainable source of adsorbent for wastewater treatment in future.


Assuntos
Metais Pesados , Eliminação de Resíduos , Incineração , Resíduos Perigosos/análise , Cinza de Carvão/química , Cálcio , Hidróxido de Sódio/análise , Metais Pesados/análise , Resíduos Sólidos/análise , Minerais/química , Óxidos/análise , Dióxido de Silício , Óxido de Alumínio , Água/análise , Eliminação de Resíduos/métodos
8.
RSC Adv ; 12(24): 15601-15612, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35685172

RESUMO

Using a plasma-assisted chemical vapor deposition (PACVD) process, carbon steel samples were coated with an organosilicon layer less than 2.5 microns thick. Ellipsometry, Fourier transform infrared (FTIR) spectroscopy, contact angle, scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to analyze the films. Additionally, gravimetric experiments were used to determine the electrochemical properties of the organosilicon coatings. Organosilicon-coated carbon steel specimens demonstrated significantly enhanced resistance to corrosive conditions, such as 3% aqueous sodium chloride solutions. The surface preparation method has a considerable influence on the morphological and electrochemical properties of the steel. Argon pretreatment significantly enhances the corrosion resistance of organosilicon-coated steel. Gravimetric research demonstrated that pretreatment with argon plasma resulted in less weight loss and corrosion than pretreatment with nitrogen plasma. The link between quantum computing and experimental data using density functional theory (DFT) and molecular dynamics (MD) was used.

9.
Environ Toxicol Pharmacol ; 92: 103863, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35421594

RESUMO

A total of six vegetables (S. tuberosum, D. carota, S. lycopersicum, A. esculentus, S. oleracea and B. juncea) were analysed for five heavy metals (As, Cd, Cr, Hg, and Pb) to evaluate the contamination load in vegetables collected from five cultivated and two market sites (n = 504) at Delhi, India. The irrigation water samples and soil samples (n = 180) were only collected from cultivated sites. The results showed that the concentration of heavy metals in soil and water samples were well below the permissible level except for Cd 0.001-0.013 µg g-1. Similarly, the concentration of Cd (>0.20 µg g-1) was detected higher in all investigated vegetables except for tomato. The evaluation index value was highest for spinach and lowest for tomato. The transfer factor values and metal pollution index was maximum in spinach and okra. Principal component analysis (PCA), Tukey's HSD (Honestly Significant Difference) test, and one-way and two-way ANOVA (Analysis of Variance) were also applied to statistically analyse the results.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , Monitoramento Ambiental/métodos , Contaminação de Alimentos/análise , Índia , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Spinacia oleracea , Verduras , Água
10.
Materials (Basel) ; 15(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269110

RESUMO

With rapid industrialization, there is an ever-increasing demand for iron oxides, calcium oxides, aluminum oxides, silica, and zeolites as raw materials for various industries, but reserves of such metal oxides are continuously diminishing. Therefore, there is an urgent need to explore new alternatives for such value-added minerals. One such material is incense stick ash (ISA), which is among the most unexplored byproducts from residential and holy places. Currently, ISA is of no use and it is disposed of in millions of tons (MTs) in rivers and other water bodies in India due to its sacred value. The major chemical composition of ISA is calcium, silica, alumina, ferrous minerals, magnesium, and traces of Na, K, P, Ti, etc. Major fractions of ISA, i.e., 50-60%, are made up of calcium and magnesium oxides; 20-30% of ISA is made up of silica, alumina, and ferrous minerals, as revealed by X-ray fluorescence spectroscopy (XRF). In the present research work, methods of recovery of value-added micro and nano minerals from ISA are suggested, using cost-effective techniques and an eco-friendly approach. Firstly, magnetic fractions were recovered by a magnetic separation method; then, alumina, silica, and calcium oxides were synthesized from non-magnetic fractions. The confirmation of the synthesized and extracted nanomaterials was done by Fourier transform infrared spectroscopy (FTIR), particle size analyzer (PSA), X-ray diffraction (XRD), field emission scanning electron microscopy with electron diffraction spectroscopy (FESEM-EDS), and transmission electron microscopy (TEM). The purity of synthesized particles varied from 40-80%. In the future, ISA will prove to be an alternative resource material for Fe, Ca, Si, C, Al, and zeolites, which will minimize solid waste pollution and water pollution arising due to the disposal of ISA into water bodies.

11.
Curr Psychol ; 41(10): 7383-7392, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33897227

RESUMO

The COVID-19 pandemic has prompted all countries to adopt restraining measures to mitigate the spread of the disease. Usually, large-scale disasters tend to be accompanied by significant increases of psychological distress, depression and anxiety. Confinement measures imposed during the COVID-19 pandemic are likely to have similar consequences. In the present study we aim to evaluate how COVID-19 affected the overall psychological functioning of Portuguese individuals by providing a comparison of current data with status prior to the COVID-19 pandemic. The study sample was composed of 150 cognitively healthy participants. Results show an overall maintenance of cognitive capacities, although subjective cognitive decline complaints significantly increased during the pandemic. Regarding mental health, restraining measures culminated in an aggravation of depressive and decrease of the perceived quality of life, associated with feelings of loneliness and perceived social isolation. Finally, higher levels of pre-COVID-19 quality of life seem to play a protective role against depression and anxiety and predict less difficulties in emotion regulation, feelings of solitude and cognitive complaints. In sum, confinement due to COVID-19 implied an aggravation of the mental health of the Portuguese population, which appears to have been attenuated in those with higher pre-pandemic levels of perceived quality of life.

12.
Bioresour Technol ; 344(Pt B): 126246, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34743992

RESUMO

The widespread distribution of organic and inorganic pollutants in water resources have increased due to rapid industrialization. Rhizospheric zone-associated bacteria along with endophytic bacteria show a significant role in remediation of various pollutants. Metaomics technologies are gaining an advantage over traditional methods because of their capability to obtain detailed information on exclusive microbial communities in rhizosphere of the plant including the unculturable microorganisms. Transcriptomics, proteomics, and metabolomics are functional methodologies that help to reveal the mechanisms of plant-microbe interactions and their synergistic roles in remediation of pollutants. Intensive analysis of metaomics data can be useful to understand the interrelationships of various metabolic activities between plants and microbes. This review comprehensively discusses recent advances in omics applications made hitherto to understand the mechanisms of plant-microbe interactions during phytoremediation. It extends the delivery of the insightful information on plant-microbiomes communications with an emphasis on their genetic, biochemical, physical, metabolic, and environmental interactions.


Assuntos
Microbiota , Poluentes do Solo , Bactérias/genética , Biodegradação Ambiental , Plantas , Rizosfera , Poluentes do Solo/análise
13.
Environ Toxicol Pharmacol ; 88: 103740, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34506906

RESUMO

The accumulation of heavy metals (HMs) in soil is presently a significant threat to the environment. The Cu, Mn, Zn, Cd, Pb, Ni, and Co concentrations were assessed in the agricultural soil samples. The results of various contamination indices including contamination factor, geo-accumulation indices, and ecological risk indices revealed that Cd is responsible for moderate to high contamination of soil. The multivariate statistical analyses including PCA, HCA, and correlation matrix suggested the mixed origin of HMs in the soil. Ingestion was found to be a primary route of exposure while dermal and inhalation exposure was negligible. Overall, the non-carcinogenic health risks were well within the safe limit to human health. However, healthwise, children were likely to be at greater risk compared with adults, due to their generally increased exposure to toxic agents through hand/mouth ingestion. Moreover, no carcinogenic risks were determined through the inhalation exposure of Cd, Ni, and Co.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Adulto , Agricultura , Criança , Cidades , Monitoramento Ambiental , Humanos , Índia , Neoplasias , Medição de Risco
14.
Chemosphere ; 284: 131325, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34216922

RESUMO

Industrialization and modernization of agricultural systems contaminated lithosphere, hydrosphere, and biosphere of the Earth. Sustainable remediation of contamination is essential for environmental sustainability. Myco-remediation is proposed to be a green, economical, and efficient technology over conventional remediation technologies to combat escalating pollution problems at a global scale. Fungi can perform remediation of pollutants through several mechanisms like biosorption, precipitation, biotransformation, and sequestration. Myco-remediation significantly removes or degrades metal metals, persistent organic pollutants, and other emerging pollutants. The current review highlights the species-specific remediation potential, influencing factors, genetic and molecular control mechanism, applicability merits to enhance the bioremediation efficiency. Structure and composition of fungal cell wall is crucial for immobilization of toxic pollutants and a subtle change on fungal cell wall structure may significantly affect the immobilization efficiency. The utilization protocol and applicability of enzyme engineering and myco-nanotechnology to enhance the bioremediation efficiency of any potential fungus was proposed. It is advocated that the association of hyper-accumulator plants with plant growth-promoting fungi could help in an effective cleanup strategy for the alleviation of persistent soil pollutants. The functions, activity, and regulation of fungal enzymes in myco-remediation practices required further research to enhance the myco-remediation potential. Study of the biotransformation mechanisms and risk assessment of the products formed are required to minimize environmental pollution. Recent advancements in molecular "Omic techniques"and biotechnological tools can further upgrade myco-remediation efficiency in polluted soils and water.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Fungos , Plantas , Solo , Poluentes do Solo/análise
15.
Environ Toxicol Pharmacol ; 87: 103690, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34144184

RESUMO

Iron (Fe) and manganese (Mn) are harmful for human health, if present in a higher concentration, particularly in groundwater. The results of the study revealed that the concentration of Fe and Mn exceeded the WHO guideline for safe drinking water in 88 % and 74 % of groundwater samples, respectively. The non-carcinogenic health risk as assessed through computation of hazard quotient (HQ) due to intake of Fe and Mn contaminated groundwater was found much higher for children and adults. The values of HQ were recorded up to 1.96 for children and 1.52 for adult in case of Fe; and up to 2.13 for children and 1.61 for adult associated with Mn. On the basis of occurrence and spatial distribution of Fe and Mn in groundwater, the study area was delineated under high, elevated and low risk zone for priority attention.


Assuntos
Água Potável/análise , Ferro/análise , Manganês/análise , Poluentes Químicos da Água/análise , Adolescente , Adulto , Criança , Pré-Escolar , Monitoramento Ambiental , Água Subterrânea/análise , Água Subterrânea/química , Humanos , Índia , Lactente , Ilhas , Medição de Risco , Rios , Adulto Jovem
16.
Environ Res ; 200: 111373, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34033834

RESUMO

The recent spread of severe acute respiratory syndrome coronavirus (SAR-CoV-2) and the accompanied coronavirus disease 2019 (COVID-19) has continued ceaselessly despite the implementations of popular measures, which include social distancing and outdoor face masking as recommended by the World Health Organization. Due to the unstable nature of the virus, leading to the emergence of new variants that are claimed to be more and rapidly transmissible, there is a need for further consideration of the alternative potential pathways of the virus transmissions to provide the needed and effective control measures. This review aims to address this important issue by examining the transmission pathways of SARS-CoV-2 via indirect contacts such as fomites and aerosols, extending to water, food, and other environmental compartments. This is essentially required to shed more light regarding the speculation of the virus spread through these media as the available information regarding this is fragmented in the literature. The existing state of the information on the presence and persistence of SARS-CoV-2 in water-food-environmental compartments is essential for cause-and-effect relationships of human interactions and environmental samples to safeguard the possible transmission and associated risks through these media. Furthermore, the integration of effective remedial measures previously used to tackle the viral outbreaks and pandemics, and the development of new sustainable measures targeting at monitoring and curbing the spread of SARS-CoV-2 were emphasized. This study concluded that alternative transmission pathways via human interactions with environmental samples should not be ignored due to the evolving of more infectious and transmissible SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Água
17.
Artigo em Inglês | MEDLINE | ID: mdl-33625705

RESUMO

Coal fly ash (CFA) and coal-based incense sticks ash (ISA) have several similarities and differences due to the presence of coal as a common component in both of them. CFA are produced from the combustion of pulverized coal during electricity production in the thermal power plants while ISA are produced from the burning of incense sticks at religious places and at houses. A typical black colored Indian, incense sticks are mainly are comprised of coal powder or potassium nitrate, wood chip, fragrance, binder or binding agent, and bamboo sticks. The black colored incense sticks have coal powder or charcoal as a facilitator for smoother burning of incense sticks. The detailed investigation of CFA and ISA by X-ray fluorescence spectroscopy (XRF), electron diffraction spectroscopy (EDS), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), Fourier transform-infrared (FTIR), X-ray diffraction (XRD), particle size analyzer (PSA), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) revealed the morphological, chemical, and elemental properties. Both the coal based ashes comprises minerals like calcites, silicates, ferrous, alumina, and traces of Mg, Na, K, P, Ti, and numerous toxic heavy metals as confirmed by the XRF, ICP-AES, and EDS. While, microscopy revealed the presence of well-organized spherical shaped particles, namely cenospheres, plerospheres, and ferrospheres of size varying from 0.02 µm to 7 microns in CFA. Whereas, ISA particles are irregular, aggregated, calcium to carbon rich whose size varies from 60 nm to 9 microns and absence of well-organized spherical structures. The well developed and crystalline structure in CFA is due to the controlled combustion parameter in thermal power plants during the burning of coal while incense sticks (IS) burning is under uncontrolled manner. So, FTIR and XRD confirmed that the major portion of fly ash constitutes crystalline minerals whereas ISA have mainly amorphous phase minerals. CFA have ferrospheres of both rough and smooth surfaced, which was absent from the ISA and hence ferrous particles of CFA are of high magnetic strength. The detailed investigation of ashes will lead to the applications of ashes in new fields, which will minimize the solid waste pollution in the environment.

18.
Artigo em Inglês | MEDLINE | ID: mdl-33562584

RESUMO

In recent times, the use of traditional herbal medicines in healthcare has declined, particularly amongst the rural population. This implies a risk of losing vital information from previous generations regarding plants and their use in traditional medicine. The objective of this study is to catalog the ways employed by inhabitants of the Garhwal Himalayas as part of their traditional approaches to healthcare. Information was gathered through snowball sampling using a questionnaire combined with informal interviews. This was supplemented by discussions with peers and practitioners prominent in this healing technique. The homogeneity within ethnomedicinal knowledge of these rural residents was tested using the informant consensus factor (Fic). The calculation of the fidelity value (FL) and the cultural importance index (CI) were made regarding the population's dependency on plants. A total of 88 plant species from 44 families and 80 genera were identified as medicines for various complaints. Leaves were the most frequently used plant part followed by fruits, seeds, roots, bark, and flowers/buds. The largest number of taxa (15 species) were used for treatment of skin ailments (with Fic score of 0.85) followed by wounds, coughs, and digestive problems. There was a significant relationship observed between the medicinal plants used and distance (time of access) and family income. The present study will provide baseline information to be established for future research. The available information could help to discover new drugs for the pharmaceutical industry. Thus, the study revealed that the plants that have high scores of FL and CI can be used to discover new drug extraction in the future for further studies.


Assuntos
Fitoterapia , Plantas Medicinais , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Medicina Tradicional , Fatores Socioeconômicos , Inquéritos e Questionários
19.
J Environ Manage ; 285: 112174, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33607566

RESUMO

Chromium (Cr) is a trace element critical to human health and well-being. In the last few decades, its contamination, especially hexavalent chromium [Cr(VI)] form in both terrestrial and aquatic ecosystems, has amplified as a result of various anthropogenic activities. Chromium pollution is a significant environmental threat, severely impacting our environment and natural resources, especially water and soil. Excessive exposure could lead to higher levels of accumulation in human and animal tissues, leading to toxic and detrimental health effects. Several studies have shown that chromium is a toxic element that negatively affects plant metabolic activities, hampering crop growth and yield and reducing vegetable and grain quality. Thus, it must be monitored in water, soil, and crop production system. Various useful and practical remediation technologies have been emerging in regulating chromium in water, soil, and other resources. A sustainable remediation approach must be adopted to balance the environment and nature.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Animais , Cromo/análise , Ecossistema , Saúde Ambiental , Humanos , Solo , Poluentes do Solo/análise
20.
Water Environ Res ; 93(9): 1543-1553, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33565675

RESUMO

The present study describes the phytoremediation performance of water lettuce (Pistia stratiotes L.) for physicochemical pollutants elimination from paper mill effluent (PME). For this, pot (glass aquarium) experiments were conducted using 0% (BWW: borewell water), 25%, 50%, 75%, and 100% treatments of PME under natural day/light regime. Results of the experiments showed that the highest removal of pH (10.75%), electrical conductivity (EC: 63.82%), total dissolved solids (TDS: 71.20%) biological oxygen demand (BOD: 85.03%), chemical oxygen demand (COD: 80.46%), total Kjeldahl's nitrogen (TKN: 93.03%), phosphorus (P: 85.56%), sodium (Na: 91.89%), potassium (K: 84.04%), calcium (Ca: 84.75%), and magnesium (Mg: 83.62%), most probable number (MPN: 77.63%), and standard plate count (SPC: 74.43%) was noted in 75% treatment of PME after treatment by P. stratiotes. PCA showed the best vector length for TKN, Na, and Ca. The maximum plant growth parameters including, total fresh biomass (81.30 ± 0.28 g), chlorophyll content (3.67 ± 0.05 mg g-1  f.wt), and relative growth rate (0.0051 gg-1  d-1 ) was also measured in 75% PME treatment after phytoremediation experiments. The findings of this study make useful insight into the biological management of PME through plant-based pollutant eradication while leftover biomass may be used as a feedstock for low-cost bioenergy production. PRACTITIONER POINTS: Biological treatment of paper mill effluent using water lettuce is presented. Best reduction of physicochemical and microbiological pollutants was attained in 75% treatment. Maximum production of chlorophyll, plant biomass, and highest growth rate was also observed in 75% treatment.


Assuntos
Araceae , Poluentes Ambientais , Poluentes Químicos da Água , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...